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Correspondence

Distinctions between Gyroelectric
and Gyromagnetic Media in
Rectangular Waveguide

Gas plasmas and ferrites become aniso-
tropic when placed in a magnetostatic field.
Waveguides containing these media may be
termed, respectively, as gyroelectric and
gyromagnetic [1]. In this correspondence we
compare these waveguides when the mag-
neto-static field is transverse to the direction
of wave propagation. In particular, we dis-
cuss the difference in the TE,,, modes of
rectangular waveguides. Although the partial
differential equations for the longitudinal
fields in the two waveguides are duals, the
essential difference lies in the boundary con-
ditions. The result is that in gyroelectric
waveguides the general solution, in exact or
approximate form, for the higher order
modes is necessary. This result is unlike that
for the gyromagnetic case in which the re-
stricted TE,,, solutions are adequate for
analysis of practical problems.

The following conventions are adopted:
1) all fields vary as exp 4(xz—wi); 2) the
magnetostatic field Hy is along the x axis so
that gyroelectric and gyromagnetic media

are characterized, respectively, by the
tensors
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Semiconductors are included in gyroelectric
media by viewing the conductivity tensor as
part of an equivalent complex permittivity
tensor; 3) modes are designated as TE,.,
or TM,». The first index refers to the field
dependence on x, and the second index to v,
irrespective of which coordinate is along the
longer dimension of the guide. The dominant
mode is TE;,o or TEy.1, depending on whether
the longer dimension is x¢ or y¢. The bound-
aries are at x=(0, x) and y=(0, o).

Consider the partial differential equa-
tions for E. and H, in gyroelectric wave-
guide,
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where
kOZ = kZ —_ K2
k1% = k% — k% k? = wiue.
These equations are exact duals of the equa-
tions for gyromagnetic waveguide derived by
Vartanian and Jaynes [2]. The boundary
conditions, however, are different in the
two cases. Because of the special forms of
the tensors (1) and (2), the boundary con-
ditions of vanishing tangential E and normal
B can be expressed in the alternative forms
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for gyromagnetic waveguide, Thus, a solu-
tion of the boundary value problem for one
type does not yield by duality the correct
solution for the other, even though the dif-
ferential equations are mathematically
equivalent. The more significant difference
appears in the TEq,, solutions.

Tuae TE SOLUTIONS

It is well known that (3) and (4) do not
admit TE or TM solutions unless the fields
vary in one transverse coordinate only. In
rectangular waveguides, this condition
necessarily implies the TE modes, since E,
must vanish identically on the boundaries.

When the fields depend on vy only,
9/0x=0, (4) leads to the TE,,, solutions
with wave numbers
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These wave numbers and the associated
fields do not depend on the magnetostatic
field. Hence, in gyroelectric waveguide, the
TE,,» modes hold no interest. In contrast, in
gyromagnetic waveguide, the dual of
(3) yields the distorted TE,,, modes of
Van Trier [1] with wave numbers
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These modes depend on the external field
and reduce to the conventional TE,,, modes
when Hy=0.

When the fields depend on x only,
8/3y=0, the equations for both classes of
waveguides reduce to an inconsistent pair
which admit only the trivial solution H,
=constant. Thus, the TE,  modes do not
exist.

In practice, the wave within the filled
waveguide is launched from an empty sec-
tion supporting the dominant TE,,: (or
TE4,0) mode, and the problem consists of
determining the behavior of this mode as it
passes through the media. The exact TEq.»
solutions have adequately described gyro-
magnetic phenomena {3]. Thus, the general

solution, with no restriction on the field
variation, is seldom essential. In gyroelectric
waveguide, however, if the wave is to de-
pend on the magnetostatic field, all six com-
ponents of the field are necessary, and these
must depend on both transverse coordinates.
The general solution, or approximations
thereof, is then essential for analysis of gyro-
electric phenomena. Moreover, since the
TEo.1 mode is independent of H,, the mag-
netically controllable waves cannot be
launched with this mode. If a dominant
mode is used for the launching, it must be
the TE,,,.

Since the TE;, mode is not admissible
in the magnetized medium, it excites a mode
which depends on both coordinates. Thus, a
problem of the gyroelectric waveguide is to
establish a quantitative connection between
the TE;,o mode in the absence of Hy and the
form of the distorted wave in the presence
of Hy. It will become evident that the task
of finding the TEq, limit of the general solu-
tion is a difficult one. A perturbation method
[4], [5] was found to be simpler in estab-
lishing this connection. It is worth noting
that the TE,,, limit of the general solution
is not difficult to find because these modes
are admissible restricted solutions.

THE GENERAL SOLUTION

We shall now give a brief account of a
method for the rigorous general solution
[6]. The solutions are of identical form in
gyromagnetic and gyroelectric waveguides,
but the conditional equations are not. Since
a solution for the former has been given [2],
we shall derive the conditional equation for
the latter.

To separate variables, let

E; = u(@)e() (9a)
He = o(x)h(y), (9b)
and substitute these in (3) and (4). After
dividing the first equation by v’e and the

second by u#'h, one obtains two equations of
the form
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where the primes denote differentiation. The
key to separation of variables is that the
variations of F and G with respect to x and
vy must vanish. This follows from the fact
that F and G are themselves zero for all x
and y. The vanishing variations constrain
# and v to the relations
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where ¢ and ¢’ are separation constants.
With these relations we eliminate « and »
from (3) and (4) to obtain the equations for
¢ and A,
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where the coefficients are defined by com-
parison to (3) and (4).

The separated equations allow rigorous
solution for any set of boundary conditions,
such as the set arising in a partially filled
guide. For the completely filled waveguide,
by (5) and (6), # and v” must vanish on
x=(0, x0) in both types of waveguides. Thus
the solutions for (11a) and (11b) are
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with an,=c=c'=m=n/xo. The solutions of
(12a) and (12b) are found to be combina-
tions of trigonometric functions.

The conditional equation is obtained in
the usual manner. After introducing the
boundary conditions, one obtains two alge-
braic equations in two unknowns whose solu-
tion exists only if the determinant vanishes.
In gyroelectric waveguide, the condition of
vanishing ¢ and %’ on y=(0, ) leads to the
set of equations whose determinant is
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1t is evident that evaluation of the roots
of P(x, Hy) is a difficult problem. An attempt
at expressing the roots x as a Taylor series in
powers of Hy was not successful. In this
series, the derivatives of x were evaluated by
implicit differentiation of P(x, Hy). Since the
theory of implicit functions is wvalid for
single-valued functions only, and since « is a
double-valued function of Hy, this method
is not applicable. It is interesting that the
second-order Taylor approximation gives
the arithmetic mean of the two branches of
« calculated from degenerate perturbation
theory. We also note that the limiting form
of P for the TE,,, modes is obtained readily
by setting a, =0, the value of « correspond-
ing to no variation in x. The roots are then
the correct ones given in (7). On the other
hand, to find the roots for the wave to
which the TE,,, mode is distorted, one
needs to trace the variation of P as Hy is
changed from zero. This is a complicated
process since every term in P is a function
of H 0-

CONCLUSION

We have seen that, although gyromag-
netic and gyroelectric waveguides are duals,
their behaviors are different. The differ-
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ences are particularly significant in the

TEo.» modes. Gyroelectric phenomena in

rectangular waveguide, unlike gyromagnetic

phenomena, can be investigated only

through the general solution which is too

unwieldy for practical applications. Thus,

approximation methods [5] are very desir-

able. We have also shown that the general

solution can be obtained rigorously by the
method of separation of variables.
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A High Directivity, Broadband
Coaxial Coupler

Directional couplers having the proper
impedance and directivity characteristics
are useful devices for reflectometry measure-
ments and for the intercomparison of RF
power meters. In the latter application,
stable, sensitive power detectors are con-
nected to the appropriate coupler sidearms
to allow monitoring of both the incident and
reflected powers in the primary line.

While it is possible to achieve high direc-
tivity with ordinary couplers at a given fre-
quency by use of auxiliary tuners, the tun-
ing procedures are somewhat involved and
time-consuming. It is thus more convenient
to use couplers which are of inherent high
directivity. In addition, tuning for high
directivity may aggravate the impedance
mismatch conditions at one or more of the
coupler output ports.

It is the purpose of this correspondence
to describe the design of a high (50-dB)
directivity broadband (0.7 to 1.5 and 3 to
4 GHz) coaxial coupler having low VSWR
(<1.01) in both the primary and secondary
lines. Achievement of these characteristics
was made possible to a large degree by the
recent availability of precision coaxial con-
nectors which are used on all ports. The
basic design is more or less conventional in
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that two transmission lines are inductively
and capacitively coupled by means of a
common slot in their outer conductors. In-
ductive coupling is a function of the width
of the slot, while capacitive coupling is a
function of the spacing between center con-
ductors. The coupling ratio K, as derived by
Monteath,! is given by

PO A P
=53 sin 3 1

where gl is the length of the coupling slot in
electrical wavelengths and 2 is a constant
determined by the slot width and the spac-
ing between center conducters. Thus, the
coupling is a maximum at frequencies
(fey 3fe, etc.) where [ is an odd multiple of a
quarter-wavelength, A/4. The coupling is
near zero at frequencies where [ is an even
multiple of A/4. The bandwidth of the
coupler, centered on each of the frequencies
Jer 3fe, etc., 1s roughly equal to £, (i.e., 1150
MHz for the coupler described here).

High directivity was obtained primarily
by designing the coupler so that the proper
balance was obtained in the mutual capaci-
tance and inductance between the coupled
lines. Methods for calculating the proper
spacing dimensions for a given coupling
ratio are given by Monteath.! Of almost
equal importance for broadband use is the
elimination of impedance discontinuities
within the coupler, at connectors, and in the
load resistor which terminates the secondary
line. Discontinuities cause reflections which,
even though small, can significantly reduce
the directivity. For example, in order to
achieve 50-dB broadband directivity it is
necessary that the reflection coefficient of
internal discontinuities be reduced to the
order of 0.002 or less. Usually, the largest
discontinuity in coaxial couplers with cou-
pling closer than about 30 dB occurs at the
coupling slot. In this region the character-
istic impedance Z, of both the primary and
secondary lines tends to be lower than ln the
uncoupled region. In the 20-dB, 50-chm
coupler described here, the Z¢ in the coupled
region as measured with a time domain re-
flectometer (TDR) was found to be 46
ohms. A wave propagating from the input
would see an abrupt change in line irmped-
ance from 50 ohms to 46 ohms at the begin-
ning of the coupling slot. The impedance
remains 46 ohms along the length of the slot
and then abruptly changes to 50 ohms again
at the end. In order to bring the impedance
in the coupled region back to 50 ohms, it
was necessary to increase the effective outer
to inner conductor diameter ratio. This was
done by undercutting the outer conductors
in the coupled region with a milling tool hav-
ing a diameter (for convenience) that was
the same as the original line diameter. Most
of the undercutting was done in the lower
and upper halves, respectively, of the pri-
mary and secondary outer conductors. Thus,
in cross section, the shape of the outer con-
ductors tended to become oblong in shape
as shown in Fig. 1.

The coupler was made of brass with an
outer conductor diameter of 0.5625 inch and

1 G. D. Monteath, “Coupler transmission lines as
symmetrical directional couplers,” Proc. IEE (Lon-
don), pt. B, vol. 102, pp. 383-392, May 1955.



